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1 Objectives

Reacting flow simulations can be significantly improved through the utilization of detailed chem-
istry mechanisms. Two classes of problems that may benefit include chemical laser systems and
hydrocarbon-fueled propulsion systems; each of which typically involve on the order of 50 to 200
chemical species, 200 rate equations, and time scales ranging from 10-9 seconds to over 1 second.
In general, implicit CFD algorithms are necessary to bypass chemical stiffness, but these schemes
become very computationally demanding (both in terms of required memory and operation count)
as the number of species grows. As a result, incorporation of detailed chemistry mechanisms into
geometrically complex, turbulent CFD simulations becomes computationally prohibitive: Current
approaches rely on reduced chemical mechanisms (e.g., 20 to 30 species or less) which require con-
siderable time and effort to develop and become less accurate with each simplification.

Our approach employs a loosely-coupled fluid-dynamic/chemistry formulation, that utilizes implicit
solution methods for the fluid-dynamic equations and low-cost explicit or semi-implicit diagonal
methods for the species continuity equations. The solution scheme for the chemical system (i.e.,
the species continuity equations) utilizes a time-operator splitting method and a variable coefficient
ordinary differential equation solver (DVODE) for the reaction fractional step to appropriately handle
chemical stiffness. The DVODE solver appears to be very efficient, and this approach allows the use
of less-expensive explicit or semi-implicit solution algorithms for the species transport fractional step.
Our ultimate goal is to generalize, implement, and demonstrate (using our GASP CFD flow solver)
that this scheme can be used to significantly reduce the costs associated with simulating complex
flows with detailed chemical mechanisms.

2 Status of Effort

To date, we have developed and implemented (into our GASP CFD flow solver) a loosely-coupled
strategy for the fluid-dynamic and chemical systems. The approach uses the lower-upper, symmetric,
Gauss-Siedel (LU-SGS) implicit scheme to advance the fluid-dynamic system. In most cases, the
chemical reactions have much smaller time scales than those associated with the flow, resulting in
stiffness due to the source terms. Solution of the chemical system uses a time-operator splitting
approach that allows isolation of the stiff source term from the transport terms. As a result, the
solution process can be divided into two fractional steps - a transport fractional step and chemical
production (or reaction) fractional step. The chemical transport fractional step is currently solved
using the simple, low-cost Euler explicit scheme. The chemical production fractional step involves
solving a system of ordinary differential equations representing the chemical source term and is
carried out using a variable coefficient ordinary differential equation solver (DVODE). The DVODE
solver has been integrated into the GASP CFD flow solver and appears to be very efficient. We
have studied a number of steady-state flow problems, examining the usefulness of this scheme for
reducing chemical stiffness and lowering computational costs. Our results indicate that the time-
operator splitting approach with the DVODE solver represents a viable method for reducing chemical
stiffness, allowing utilization of low-cost explicit and semi-implicit diagonal schemes for the chemical
transport fractional step.



3 Accomplishments/New Findings

3.1 GASP Governing Equations

GASP uses a cell-centered finite volume approach to solve the integral form of the Reynolds-Averaged
Navier-Stokes equations:

a-- Q dY + (F - F,).- fi dS = W dY.(1a rrrrrrisrN

The standard fluid-dynamic system has been augmented to include the effects of generalized chem-
istry, i.e., the global continuity equation has been replaced with N species continuity equations to
allow finite-rate chemical processes. The conserved-variable vector, Q, the inviscid and viscous flux
vectors, F and F, and the source-term vector, W, are given as:

P1 pJU -PlVd

P2 P2U -P2Vd W2

Q PN , F= pgu , F,= -PNVd W, - WN
pUJ pUIU + p il T il 0
pu2 pu2u + p12  T' 12 0
pU3 PU3U + p 13  k. 13 0
peo puho -q+T.u 0

Here, T is the stress tensor.
For a structured curvilinear coordinate system (ý, 7, 1), the cell-centered, finite volume formula-

tion for Eqn. (1) can be written as:
I -- + R(Q)= 0 (2)

where
R(Q) = 5 (TF - TF,) + 5,7(6• - 6,v) + 6(( HI- - H,~) - -1 . 3

3.2 Generalized Chemistry

GASP allows a general representation of chemical systems with N species and J reactions given by

V /,jX 1 + V12,JX 2 + ... + V1N,jXN "7- V 1,jX 1 + V 2,jX 2 + - -+. V1 N,JXN

j = 1, 2,..., J, (4)

where v,',j and 1,8,j are the stoichiometric coefficients of species X, in the jth reaction. The rate of
production of species s, denoted w8, is given as

J N NdpW = J•i•--(v",, j ) [kf. Ij(-T -) "J' - kb.-,j P)vL"qi
0 -dt MA••s3 8j

j=1 1 AlM,1  1, A4
= 1, 2,..., N , (5)

where kf,j and kb,j are the forward and backward reaction rates. In GASP, the forward rates are
determined from the Arrhenius equation

kf = cT e-E/kT (6)



and the backward rates are determined from the ratio of the forward to equilibrium rates

kb = kf (7)

The equilibrium rates are determined from either the Arrhenius equation, equilibrium curve fits, or
from the McBride Curve fits and the minimization of Gibbs free energy.

3.3 Explicit Stability Bound

Explicit methods for solving flows with finite rate chemical kinetics are not practical because the
time-step limit imposed by the explicit stability bound is too small to make the computation feasible.
To examine this fact, we consider the linear scalar advection equation with a "chemical" source term:

6u Ou _ (8
t +a- -(8)

and the associated explicit, upwind (a > 0) difference equation
Atn vxui _ un

Atu- + a Vx - (9)
At AX T.

Here, r, is the characteristic time for chemistry, and is representative of the time needed for the
chemistry to reach equilibrium. Stability analysis produces two constraints: one based on the wave
propagation (the CFL condition) and one based on the production of state. Specifically, we have

At < Ax/a,

At < 2 Tc.

The second constraint requires that the maximum stable time step decrease with decreasing chemical
time scale (,rc). This situation is labeled "chemical stiffness", and corresponds to flow regions where
the chemistry is near equilibrium, i.e., -r, -* 0. The chemical time scale, for a given reaction, can be
related to the reaction rate k through the following general relation

k (10)

where w is a function of species concentrations. Therefore, rapid chemical kinetics i.e., k -* co,
causes numerical stiffness because the numerical time step must approach zero in order to maintain
stability.

3.3.1 Implicit Schemes

In general, implicit algorithms bypass chemical stiffness by re-scaling the chemical time steps to
accommodate the fastest reactions. The Euler implicit scheme as applied to Eqn. (2) is written as:

I + 5•(k - A-) + 5J(f3 - f3B) + ¢C (• - (Cv) - I AQ = -R(Q), (11)

Here, A, B, C, represent the inviscid flux vector Jacobians, A, B, C,, are the viscous flux
vector Jacobians, and &W/OQ is the source term Jacobian. Eqn. (11) represents a banded block
(N + 4) x (N + 4) matrix equation for AQ, where N is the number of chemical species. The band
width is dependent on the choice of spatial discretization and the grid size. While implicit schemes



provide the fastest convergence rate, they are very computationally demanding, both in terms of
memory requirements and operation count. For large numbers of species these schemes become
computationally prohibitive. Fig. 1 shows the CPU time and memory required for the lower-upper,
symmetric, Gauss-Siedel (LU-SGS) implicit scheme compared to the Euler explicit scheme on a
20 x 20 x 20 test grid using GASP. As an example, the CPU time/iteration for 60 species is 888 s
for the LU-SGS algorithm while the corresponding CPU time/iteration for the Euler explicit scheme
is 5.5 s, a factor of 161.4 times smaller. The required memory is 15.04 times smaller for 'the Euler
explicit algorithm. Obviously, there is great incentive to utilize explicit or semi-implicit algorithms
if the severe time-step limitation can be removed.

3.4 Loosely-Coupled Chemistry

The new time-integration strategy is based on a loosely-coupled fluid-dynamic/chemistry approach.
This method allows solving the 5 fluid-dynamic equations (i.e., the mixture continuity equation,
3 momentum equations, mixture energy equation, and two-equation turbulence if included) using
implicit methods, with the possibility of solving the N species continuity equations using low-cost
explicit or semi-implicit diagonal schemes. In the loosely-coupled approach, we partition the gov-
erning equations into two equation sets; a chemical set and a fluid-dynamic set. The partitioned
conservative variable vector is given as follows:

P
pul
pU2
Pu 3

peo
QF '1_ pkQ . . . pw
QC I ...

pci
Pc2

pcN

Here ci is the specie's mass fraction, (i.e., ci =_ pi/p). In the first step of the loosely-coupled procedure,
we update the fluid-dynamic system assuming constant mass fractions, ci. At the end of this step the
species densities, pi', are adjusted to reflect the changing mixture density as pi' = p' ci. In the second
step, we solve the chemistry system (using the updated flow variables) for the individual specie's
densities. During this step the mixture density is held constant, and the species mass fractions are
determined as ci = pci/ EZ(pci). This summation enforces the constraint that E cj = 1. With this
methodology, the fluid-dynamic system handles the global mass conservation while the chemistry
system specifies the chemical composition. Using the loosely-coupled approach, the majority of the
viscous terms are handled implicitly, with the exclusion of the species diffusion terms. This approach
is expected to adequately reduce the viscous stability constraint for most problems. Our approach
also allows for implicit boundary conditions for the fluid dynamic system.

In our recent work we have implemented the basic framework and tested the loosely-coupled scheme
in GASP. Test cases show that the method convergences well and produces results consistent with
the fully-coupled scheme.
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Figure 1: CPU time and memory requirements vs. the number of chemical species for the LU-SGS
implicit and Euler explicit schemes on a 20 x 20 x 20 test grid.



3.5 Time-Operator Splitting

Solution of the chemical system uses a first-order, time-operator splitting approach that allows iso-
lation of the stiff source term from the transport term. The chemistry system is written in terms of
the transport and reaction components

1 0Q + RcT(Q) + RcR(Q) = 0, (12)

where RCT is the chemical transport residual and RCR represents the source term due t6 chemical
reaction

RCT(Q) = 5•(Fc - Fc,) + J, (Gc - Gc, + 6((Hc - Ic,,) , (13)
1

RCR(Q) = ---- W. (14)

The terms are then split, creating two systems of equations. Thus, a single step of the first order
splitting method advancing the solution from time tn to tn+1 = tn + At amounts to an application
of time discretizations applied to the system. The first step advances the transport system

1 &Qc
S'- + RcT(Q)=0, (15)

from the initial condition Qn for a time At, and the solution is denoted Qn+l. The second step
advances the reaction system 1 &QcS-a + RcR(Q) = 0, (16)

J at
from the initial condition Qn+l for a time At to yield the final value Qn+l.

3.5.1 Transport Fractional Step - Explicit Methods

The chemical transport fractional step (Eqn. (15)) is currently solved using the simple low-cost Euler
explicit scheme. As applied to Eqn. (2) the Euler explicit scheme is written as

Qn+l = Qn - J At R(Q). (17)

Future work utilizing semi-implicit diagonal schemes may be used to improve stability for the trans-
port fractional step.

3.5.2 Chemistry Fractional Step - DVODE

The chemical reaction fractional step (Eqn. (16)) has no spatial dependence and thus is essentially a
system of ordinary differential equations at each node, requiring no boundary conditions. The chem-
ical production fractional step is solved using the variable coefficient ordinary differential equation
solver DVODE at each grid node. Input to the DVODE solver requires an estimate of whether or not
the problem is stiff. If the problem is stiff DVODE utilizes Jacobians (either numerically generated
or user-prescribed) otherwise if the problem is non-stiff DVODE utilizes efficient explicit procedures.
In our implementation, we use an estimate of the local chemical Damkohler, Da, number to indicate
chemical stiffness. At locations in the flow field where the Damkohler number is larger than some
threshold value, Da'ax, we specify that the problem is stiff. This method allows DVODE to utilize
Jacobians only where necessary, and should provide maximum efficiency for large numbers of species.
Development of methods to compute the Damkoher number are discussed in the following sections.
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Figure 2: Fluid particle traveling across a cell.

3.5.3 Damkohler Number

The Damkohler number for chemistry is defined as the ratio of the fluid-dynamic to chemical time

Da - Tfd (18)

A large Damkohler number (Da >> 1) means that the chemical time scale is much smaller than
the fluid-dynamic scale, i.e., the chemistry is tending toward equilibrium with the flow. Likewise, a
small Damkohler number means the flow is nearly frozen, and chemical changes would be lagging far
behind the fluid-dynamic changes. The local fluid-dynamic time scale, rfd, is taken to be the time
required for a fluid particle to advect across a cell. For the cell shown in Fig. 2 the fluid-dynamic
time scale is Trfd = Ax/V, and we have

Da = Ax/VD a- "(19)

Large Damkohler numbers indicate fast chemical reactions an chemical stiffness.

Chemical Time Scales
Damkohler limiting is based on knowledge of the magnitude of the chemical times relative to the
convective time of the flow (or physical time step for unsteady calculations). In this section we develop
expressions that permit estimation of the characteristic chemical time scales for the elementary
reactions that compose a chemical kinetics model (see Turns [3]). Notice that all chemical time
scales can be written in the general form given by Eqn. (10).

The simplest possible reaction mechanism is the unimolecular reaction given by

A -k products. (20)

This reaction occurs spontaneously by decomposition of a single molecule that has previously been
activated to a high energy level by collision or otherwise. The corresponding rate equation for this

d[A] k [A]. (21)
dt



Eqn. (21) can be integrated to yield the following result for the temporal decay of [A]

[A] _ exp(-kt), (22)

where [A]o is the initial concentration of specie A. The time constant, -,, is defined as the time
elapsed for [A] to fall from its initial value to 1/e times its initial value. Hence, we solve Eqn. (22)
for the time when [A]/[A]o = l/e, yielding the following chemical time constant

Tc = 1 (23)
-k

As an example of a bimolecular reaction which occurs at a collision between two molecules, we
consider the following reaction

A + B -k products (24)

and its rate equation d[A]dt k [A] [B]. (25)

We substitute the defect variable, x = [A] - [A]o = [B] - [B]o, into the rate equation and integrate
to yield

fdx -- kt±C. (26)
(x + [A]o)(x + [B]o)

The left-hand integral can be determined to be

(x + [A]o)(X + [B]o) - [A]o - [B]o In .[A] (27)

and setting this result equal to the right-hand side of Eqn. (26), we can solve for the temporal decay
of [A]/[B] as follows

[A] [A]o
[B] = [A]o exp {([A]o - [B]o) kt} . (28)[] [B]o

This expression is used to determine the time constant for the decay of the specie concentrations.
Assigning [A]o to be the smaller of the two concentrations, we solve Eqn. (28) for r, by solving for
the time when [A]/[A]o = 1/e where we use the fact that [B]/[B]o = ([A]o/[B]o)([A]/[A]o - 1) + 1.
We obtain the time constant for the bimolecular reaction as

= £{[A]o/[B]o} (29)
([A]o - [B]o) k

where
£(x) = - In[e - (e - 1)x] (30)

and

[A]o/[B]o} =In [[A]//A[A]o[ - In [e - (e - 1) (31)-in[B]/[B]0 ý[A]/[A]o=I/e =• - I [B "

As an example of a termolecular reaction which occurs at a collision between three molecules, we
consider the following reaction

k
2A +B -4 products +A (32)



and its rate equation d[A]d[A k [A]2 [B]. (33)
dt

We again substitute the defect variable, x - [A] - [A]o = [B] - [B]o, into the rate equation and
integrate to yield

dx
(x + [A]o) 2 (x + [B]O) kt + C. (34)

In this case the temporal decay of [A]/[B] becomes

[A] [A p { ([A ]( - 21 [B]o ([5)
[B] [B][ [A]) [A]

This expression is used to determine the time constant for the decay of the specie concentrations.
For the case where [A]o is the smaller of the two concentrations, we solve Eqn. (35) for -r, by solving
for the time when [A]/[A]o = 1/e where we use the fact that [B]/[B]o = ([A]o/[B]o)([A]/[A]o- 1) + 1.
We obtain the time constant for the termolecular reaction as

{= L[A]0/[B]o} - j{[A]o/[B]o} (36)([A]o - [B]o)2 k

where

.'(x) = (1- ) (e-1) (37)

and

.F[Ao/B ~ 1 [B]o (Ao- t][o1/ -[A]) (e - 1) . (38))-A- 1) ý\ [A]/[Ajo=1/e (I
Table 1 lists the chemical time scales for several common elementary reactions.

A General Method for Computing the Chemical Time Constant
As demonstrated above, the analytical expression for the chemical time constant depends on the
form of the elementary reaction. Rather than devise expressions for every possible reaction, we have
developed a general method which applies to every case. In the context of Eqn. (4), consider the jth
chemical reaction in a general chemical-kinetics model

V/1,jX1 + V12,JX 2 +-- -+- VIN,JXN --- v"1 X 1 + V" 2 ,jX 2 + +- ± VN,jXN. (39)

The defect law for each specie can be written as follows

[X 1] - [X1 1]O [X2] - [X2 1]o [XN] - [XN]0 (40)
l4;j - 1 vj 2',j - j,j -% , (40)

We can compute the chemical time scale numerically by solving an ordinary differential equation for
the specie with the smallest negative defect. That is, we assume that V'j -,g - V/ < 0 and that
the species are listed in order of increasing defect

[X 1 ]o [X 2]° [XN]° (41)

IV1,jI - <V2,jl < NJJ

Under these conditions, we can solve the following ODE for the decay of [X1]

d[X 1] , 2 N,
dt - I kfj [Xl] I" [X 2] 2', . [XN]vNi. (42)



Reaction Example 7c

A -products I --- 2 1

1

A + M -products + M H 20+M -H- HIOH+M [
[M] k

e-1
2 A -- products 20 - 02 [

2[A]o k

e- 1
2 A -- products + A 2 02 -- 20 + 02 e

[A]o k

2A + M --> products+ M 2H+ M -ý H 2 + M e 1

2[A]o[M] k

e2- 1
3A -- products 31 1/2 + I* e

62- 1
3 A -- > products + A 3H -H 2 + H4[2]

4[A]o2 k

A + B --4 products H2 + 02 -- 2 HO C£(x)
([A]o - [B]o) k

A+B+M--* products+M N+0+M-- NO+M [ (x)
([A] o - [B] o) [M] k

2 A + B -* products + A 2 H + OH --> H 20 + H C(x) - F(x)
([A]o - [B]o) 2 k

2 A + B -- products 2-/2 + 02 ---+ 2 H20 C(x') - .F(x')
([A]o - [B]o) 2 k

Table 1: Chemical time constants where x - [A]o/[B]o and A is assigned to the specie with the smaller
initial concentration where interchangeable. The second to last reaction assumes that [A]o < [B]o,
and the last reaction uses x' - [A]o/2[B]o and assumes [A]o < 2[B]o.



The defect law (Eqn. (40)) can be used to write all the specie concentrations if Eqn. (42) in terms
of [Xi]. A similar ODE can be written for the smallest decreasing specie in the backward reaction
with rate coefficient kb,j.

To solve Eqn. (42) for the chemical time scale we use a second order mid-point method to determine
the time when the specie decays by a ratio of 1/e. We first make a first-order approximation using
the Euler-explicit method for an initial guess

II*= [X1]o + L d[X 1 ] Th.(43)
dt 0

Solving for <'*h and noting that [Xi]*/[Xl]o = 1/e, we have

T, h =d[X 1  (11e - 1). (44)([lo [X] 0)

The second-order approximation can be written by re-evaluating the right hand side of Eqn. (42)
using the mid-point concentration (i.e., [X1 ]0 + [X1]' (1/2,- *h)). Our chemical time scale for any
elementary reaction can then be written as

Tch = (X~I 0 /[d[Xl11] Th (1/e - 1). (45)[dt /•h

Fluid-Dynamic Time Scales
The fluid-dynamic time scale is determined locally for each cell in the flow field. For a structured
curvilinear coordinate system (•, , (), we compute a characteristic fluid-dynamic time for each co-
ordinate direction

--d 2 \fti-1/2 Vi,j,k + I--i+1/ 2I VA+/ 2 ) (46)

SA Aj+12 (•
=- 1 ( -A -1/2 + I j+./21 (47)

2 Vi,j,k .I j,k1 Ak1/ Ak+1l2•
7Tfdl C 2A f k-1/21Vjk + If%+1/21 •ij~ (48)

Here fL is the contravariant velocity on each face given as

it=u.Vk (k=•j,7,), (49)

where Vk is the face unit normal. The fluid-dynamic time scale is taken as the minimum of each of
the directional times

Tfd = min{Tfdý, Tfd,, Tfd d. (50)

3.6 Results

3.6.1 Ethylene Flow over Blunt Body

As a test case, we model the supersonic flow of ethylene (C2 H 4 ) around a blunt body-using the
7-specie, chemical-kinetics model of Baurle et al. [1]. A 31 x 26 mesh is generated around an axi-
symmetric body traveling at Mo, = 7.46. The free-stream pressure is p, = 42, 657 N/mr2 and the



densities which correspond to an equivalence ratio of ¢ - 1.667 are

PC2 H4  = 0.0404635 kg/rm 3

P02  = 0.0830436 kg/mr3

PN2 = 0.2734928 kg/m 3 .

The Baurle reaction mechanism is given as

C 2 H 4 -+-0 2 • 20O+2H 2

2C0+0 2  - 2C02

2112+02 • 2H 2 0.

The resulting flow solution is shown in terms of temperature contours (Fig. 3(a)) and H 2 0 mass
fraction contours (Fig. 3(b)). As the flow passes through the bow shock, the increased temperature
ignites the ethylene mixture and results in a reaction front indicated by the H20 mass-fraction
contours. Fig. 3(c) shows contours of the Damkohler number for this problem. The Damkohler
number number is largest near the stagnation point, reaching a maximum value of Da = 2223.84.
A significant portion of the flow field has Damkohler numbers exceeding Da = 100. We ran two
calculations; a fully coupled case, and a loosely coupled case with operator splitting and the DVODE
solver for the chemistry system. Jacobians were utilized in the DVODE solver for Damkohler numbers
greater than Dam'ax = 25. Utilizing the loosely-coupled scheme with operator splitting, we have been
able to obtain solutions to the ethylene blunt nose problem using the low-cost Euler explicit scheme
for chemistry transport. Fig. 4 shows good agreement for the water mass fraction along the stagnation
line for both schemes. Without the operator splitting approach, the Euler explicit scheme applied
to the complete chemistry system diverged for all tested time steps.

3.6.2 Hydrogen-Air Wedge

In a second test case we consider the two-dimensional, inviscid simulation of Mach M = 5.189,
premixed hydrogen air flow over a 20 deg wedge. The grid size is 101 x 61 and we utilize the 7-
species H 2 -Air model of Drummond [2]. In the present study, the inflow mixture is fuel-lean, with
an equivalence ratio of 4 0.75. The free-stream conditions are

PN2 = 0.2374175 kg/mr3

Po2  = 0.0720856 kg/rm3

PN2 = 0.0068121kg/M
3

T = 800K

V = 3300 m/s

p = 93.825 kN/m 2

M = 5.189.

Again, we ran two calculations: a fully coupled case, and a loosely coupled case with operator splitting
and the ODE solver for the chemistry system. The calculation was run with Van Leer flux vector
splitting and third-order spatial accuracy. Fig. 5 shows contours of temperature, H20 fractions, and
Damkohler number for this problem. As the flow passes through the shock, the increased temperature
ignites the H 2 -Air mixture. The flame front occurs downstream of the oblique shock, and is-indicated
by the the increase in water mass fraction. Ignition occurs a significant distance (i.e., the induction
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Figure 3: Contours of temperature, H2 0 mass fraction, and Da number for the ethylene blunt-body
flow.



Stagnation Line Water Mass Fractions
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Figure 4: H 20 mass fractions along the stagnation line for the ethylene blunt-body flow.

distance) downstream of the shock due to the finite characteristic time for chemical reaction and
high flow velocity. This causes a separation between the shock and flame front called the induction
zone.

Both solutions are essentially converged after 2000 iterations. Fig. 6 shows the temperature and
H20 mass-fraction profiles along the j = 41 grid line for both schemes. The results show very
good agreement between the loosely-coupled fully-coupled solutions. Convergence hangs up slightly
for the loosely-coupled scheme, but both solutions converge nearly three orders which is typical of
higher-order solutions (see Fig. 7). For the 7-specie case the fully-coupled approach required 7,508 s
while the loosely-coupled approach required 4,940 s, a speed up factor of 1.52. To examine potential
savings for larger chemical systems, we scaled the chemistry model to include up to 20 species by
adding inert species. For the 20-specie case the fully-coupled approach required 40,485 s while the
loosely-coupled approach required 11, 706 s, a speed up factor of 3.46.

3.6.3 2-D COIL Simulation

As a final test case we have run a 2-D COIL simulation using the loosely-coupled scheme. This
simulation involves I 2 -He injection into a primary stream of excited singlet oxygen. The problem
was run with Roe flux differencing, third-order accuracy and viscous effects including molecular
diffusion. Mach number and small signal gain contours for this case are shown in Fig. 8.

3.7 Conclusions

We have examined an number of steady-state flows and compared results with loosely-coupled/operator
splitting methods to fully-coupled results. The result compare well. The primary potential of this
approach is in the area of inexpensive explicit schemes. With the source-term stiffness removed,
the memory and extra computational expense of fully-coupled implicit schemes can be avoided. We
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Figure 5: Contours of temperature, H20 mass fractions, and Da number for the hydrogen-air wedge
flow.



Temperature Along J=41 Grid Line
Fully-Coupled vs Loosely coupled Schemes
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Figure 6: Line plots of temperature and H 2 0 mass fractions for hydrogen-air wedge flow.



Convergence History
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Figure 7: Convergence history for fully and loosely-coupled schemes for the hydrogen-air wedge flow.
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Figure 8: Contour plots of temperature and small signal gain for 2-D COIL simulation.



have been able to obtain solutions with finite-rate chemistry using explicit methods for th6 chemical
system. While these solutions require more iterations than implicit calculations, they become much
more efficient as the number of species increases. Although this work is focused at reducing the com-
putational resources for chemical laser calculations, these methods are also applicable to hydrocarbon
fuels which can involve 50 or more chemical species. Detailed chemical mechanisms for hydrocar-
bon fuels are continually progressing in their accuracy, however, their direct use in calculations is
prohibitive, and reduced models must be used.

4 Personnel Supported

Dr. William M. Eppard at AeroSoft, Inc.

5 Publications

Damkohler Limiting of Chemical Time Scales - Paper Number : AIAA-2005-1400

6 Interactions/Transitions

Dr. Eppard attended the AFOSR Review meeting in August, 2005. The improved capabilities in
GASP v4 will provide an immediate impact on laser analysis efforts at AFRL/DE and are also being
used at Northrup Grumman.

7 New Discoveries, Inventions, or Patent Disclosures

None.

8 Honors/Awards

None.

References

[1] R. A. Baurle, T. Mathur, M. R. Gruber, and K. R. Jackson. "A Numerical and Experimental
Investigation of a Scramjet Combustor for Hypersonic Missile Applications". AIAA Paper 98-
3121, 3 4 th AIAA/ASME/ASE/ASEE Joint Propulsion Conference and Exhibit, July 13-15 1998.

[2] J. P. Drummond, R. C. Rogers, and M. Y. Hussaini. "A Detailed Numerical Model of a Supersonic
Reacting Mixing Layer". AIAA Paper 86-1427, AIAA/ASME/SAE/ASEE 2 2 nd Joint Propulsion
Conference, June 16-18, 1986.

[3] S. R. Turns. An Introduction to Combustion. McGraw-Hill, 2000.


